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The viscous boundary layer on a finite flat plate in a stream which reverses its 
direction once (at t = 0) is analysed using an improved version of the approximate 
method described earlier (Pedley 1975). Long before reversal ( t  < - t,), the flow 
at a point on the plate will be quasi-steady; long after reversal ( t  > tz) ,  the flow 
will again be quasi-steady, but with the leading edge at the other end of the 
plate. In  between ( - t ,  < t < tz)  the flow is governed approximately by the 
diffusion equation, and we choose a simple solution of that equation which en- 
sures that the displacement thickness of the boundary layer remains constant 
at t = - t,. The results of the theory, in the form of the wall shear rate at  a point 
as a function of time, are given both for a uniformly decelerating stream, and for 
a sinusoidally oscillating stream which reverses its direction twice every cycle. 
The theory is further modified to cover streams which do not reverse, but for 
which the quasi-steady solution breaks down because the velocity becomes very 
small. The analysis is also applied to predict the wall shear rate at  the entrance 
to a straight pipe when the core velocity varies with time as in a dog’s aorta. 
The results show positive and negative peak values of shear very much larger 
than the mean. They suggest that, if wall shear is implicated in the generation of 
atherosclerosis because it alters the permeability of the wall to large molecules, 
then an appropriate index of wall shear at  a point is more likely to be the r.m.s. 
value than the mean. 

1. Introduction 
There are many situations in which fluid flows backwards and forwards past 

a solid boundary, or, equivalently, in which a boundary moves backwards and 
forwards in a steadily moving fluid. Examples include the motion induced by 
water waves on submerged bodies, the motion set up by a vibrating body in 
still fluid, and the flow of air past the wing of a hovering insect. One of the most 
important examples is to be found in the flow of blood in large arteries. Here the 
blood is pumped along by large amplitude pulsations of the heart, which generate 
large positive velocities (about 1.4 m s-1 in the human aorta) during the ejection 
phase followed by a marked flow reversal (minimum velocity about - 0.4 m s-1) 
as the aortic valve closes, and a final recovery phase when the blood comes almost 
to rest (see figure 8 below). There are two reasons why it is important to under- 
stand the interaction of this reversing flow with a solid boundary. 

(i) There is increasing evidence that the shear stress exerted by the blood on 
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the artery wall is an important factor in the generation of atherosclerotic lesions, 
which are one of the principal causes of circulatory failure. It is observed that 
lesions are distributed non-uniformly round the surface of arteries, more com- 
monly being found near bifurcations, on the inner walls of curves, and in larger 
arteries rather than smaller ones (except near the entrance to the aorta, which is 
relatively free of lesions). The regions where lesions tend to develop are closely 
correlated both with areas of the wall in which the innermost cells (the endo- 
thelial cells) are found experimentally to have a relatively low permeability to  
large molecules, such as the lipoproteins which are known to be implicated in 
the generation of lesions, and with areas which would be expected to experience 
a relatively low wall shear, at  least in steady flow. These observations have led 
to  the linked pair of hypotheses (a)  that lesions develop most readily in regions 
where the lipoproteins in the wall have difficulty getting out, and ( b )  that a 
relatively low level of shear stress reduces the permeability of endothelial cells. 
(The reader is referred to Lighthill (1975, chap. 13) for a more extensive discus- 
sion of the evidence, and to Car0 (1973) and Fry (1973) for details of many of 
the relevant experiments.) There is still a long way to go before these hypotheses 
are fully verified, and even further before they are explained. In  particular, very 
little is known about the mechanism by which wall shear stress affects endothelial 
permeability, apart from the fact that it has nothing to do with the greater thick- 
ness of the mass-transfer boundary layer in the blood in a region of low shear. 
If this were the controlling factor, the flux of material into or ou% of the wall 
would be far greater than that observed (Caro 1973). Thus it is not known whether 
it is the mean shear stress which is important as originally suggested (Caro, 
Fitz-Gerald & Schroter 1971), or some measure of the average level of shear 
stress experienced, such as the r.m.s. value. It is clear that one of the pre- 
requisites for an understanding of the process is a knowledge of what the shear 
stress on the artery wall is, as a function of time, and how it changes from point 
t o  point. At the moment, experimental techniques are not adequate to measure 
the time-dependent shear stress on the wall of even a rigid cast of a large artery, 
because the boundary layers are very thin, and currently available methods do 
not have either fine enough resolution or good enough frequency response. 
Theoretical predictions are therefore needed, and one of the objectives of the 
present work is to develop a method for predicting the wall shear stress near 
the entrance of a large artery, in which the flow periodically reverses. The method 
is applied to  the entrance of a dog’s aorta in 3 4. 

(ii) As well as flowing past the walls of blood vessels, the blood also flows past 
any object placed in a vessel. I n  recent years various methods have been developed 
for measuring blood velocity at a point in a large artery, in order to be able to 
plot velocity profiles and to describe the characteristics of any turbulence which 
may be present. The most successful such method so far has been that of hot-film 
anemometry, in which a small probe with a thin metal strip embedded in the 
surface is inserted into the artery. The velocity is inferred from measurements 
of the heat transfer from the strip when it is maintained at a fixed temperature 
above that of the blood (see Seed & Wood 1970; Clark 1974). The anemometer is 
calibrated for in vivo studies by placing the probe in a sequence of known steady 
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flows, and assuming that its response in an unsteady flow is quasi-steady. Lab- 
oratory studies in known oscillatory flows have shown that this is a good assump- 
fion for the probes used, except for a period around the time when the flow re- 
verses its direction and the blood velocity is low. The behaviour of such a probe 
in non-reversing oscillatory flow was examined theoretically in two earlier papers 
(Pedley 1972a, b) ,  in which (a )  the thermal boundary layer on the hot film (and 
hence the heat transfer) was analysed on the assumption that the unsteady wall 
shear rate on the probe was known, and (b)  this wall shear rate was predicted 
from a study of the viscous boundary layer on the probe, driven by the oscil- 
latory free stream. Many idealizations were introduced in the theoretical model 
(for example that the velocity and temperature fields are two-dimensional), but 
the most restrictive was the requirement that not only the free stream but also 
the wall shear rate over the film should not reverse its direction. This meant 
that  the departure from quasi-steady beheviour became significant only after 
the theory was no longer applicable, and one of the objects of the present work 
is to extend the theory to cover reversing flow. A simple model of the probe is 
that of a finite flat plate with a heated film on the surface near its mid-point. 
The variation of wall shear rate on a finite flat plate in a reversing free stream is 
computed in $5 2 and 3 of this paper. The rate of heat transfer from the hot film, 
driven by the oscillatory wall shear rate, will be the subject of a future paper. 

Throughout this paper we shall treat the motion of a homogeneous Newtonian 
fluid of kinematic viscosity v. In  the applications to blood flow, therefore, we 
explicitly assume that the non-Newtonian and non-homogeneous properties of 
blood (which is a concentrated suspension of flexible red cells) can be ignored. 
This is justified as long as the shear rates in the fluid do not fall below 100 s-l, 
and so long as the length scales of the flow are large compared with the cell 
diameter and spacing, which are of the order of 10pm (see Whitmore 1968, 
Chap. 6). The kinematicviscosity of whole blood isnormally about 4 x lo4 m2 s-l. 

The ideas behind the approximate method used here to analyse boundary 
layers in reversing flow were outlined in a recent paper (Pedley 1975). In  it the 
method was applied to a very simple thermal boundary-layer problem to which 
an exact solution was available so that the accuracy of the approximate method 
could be assessed. It was found to be quite acceptable: the maximum error in the 
prediction of the heat transfer from a heated strip in a uniform reversing flow 
was less than 17 %. In  the next section the application of the method to two- 
dimensional viscous boundary layers is explained fully, and a modification intro- 
duced which is expected to increase the accuracy still further. 

2. Development of the approximate theory 
Consider a finite flat plate occupying the region 0 < D < L of the plane f) = 0 

with velocity l?(t") in the D direction far from the plate, varying with character- 
istic frequency w. Suppose that the flow reverses its direction once, at t" = 0, and 
that l? 0 for $2 0. Suppose too that, long before t" = 0,  the Reynolds number 
Lo(t")/v is large, and the frequency parameter wL/l?(t") is small. There will then 
be an approximately quasi-steady boundary layer on the plate, growing from 
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the leading edge D = 0. (There will also be a quasi-steady wake downstream, and 
small regions of length scale v/t?(t”) near the leading and trailing edges where 
boundary-layer theory is not applicable, but these regions will be ignored.) 
Similarly, long after t” = 0, there will be a quasi-steady boundary layer growing 
from the new leading edge 2 = L, as long as the Reynolds number and frequency 
parameter are again large and small respectively. 

We introduce dimensionless variables as follows : 

x = 2/L, y = g(U,,/vL)&, t = iu,/L, u = quo, u = quo, 
where U,, is an appropriate velocity scale for the free-stream velocity ??(t”). The 
boundary-layer equation governing the x component of velocity, u(x ,  y, t ) ,  over 
the flat da t e  is now 

A 

with boundary conditions 

u =  0 on y=O,  u+U(t) as y+m. (2) 

The flow in the quasi-steady boundary layers represents a balance between the 
convective inertia terms in (1 )  (the second bracket on the left-hand side) and 
the viscous term (the right-hand side). The velocity profile in each case is the 
familiar Blasius profile; for example, when t < 0, we have 

u. = U(t)f’(Vl), where V l  = Y[U(t)/2XI+, (3) 

f”+ff” = 0, f(0) =f’ (O)  = 0, f’(OO) = 1. 

andf(7,) is the solution of 

This quasi-steady solution remains accurate as long as the unsteady inertia terms, 
the first bracket on the left-hand side of (11, are small compared with the con- 
vective terms, i.e. as long as 

(4) 

where t? = dU/dt. As t approaches zero, however, U becomes very small, and el 
becomes very large (unlem 0 is also zero at t = 0). This suggests that, near t = 0, 
the flow will be approximately represented by a diffusive balance between the 
unsteady inertia terms and the viscous term. Vorticity will continue to diffuse 
out into the fluid until convection once more becomes important as the flow is 
accelerated in the opposite direction. The boundary-layer approximation is still 
expected to be applicable to the diffusive flow as long as there is not enough 
time for the layer thickness to become comparable with L before the new quasi- 
steady boundary layer takes over. 

The approximate solution for u throughout the period of reversal is constructed 
by asserting that a t  every point x on the flat plate the flow is initially quasi- 
steady, and approximately given by (3). Then, at  a definite time t = - t l(x) < 0, 
there is an abrupt, instead of a gradual, transition to a diffusive solution, ob- 
tained from (1) without the second bracket. Then at  another definite time 
t = +tz(x) > 0, the new quasi-steady boundary layer, growing from x = 1, 

= XI q/u2 < 1, 
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takes over. The solution in the periods of approximately quasi-steady flow can 
be made more accurate by including the second term in an expansion in which 
the unsteady inertia terms are taken to be first-order small quantities; for t < 0 
this second term is O(s,). Pedley (1972b) showed that the first two terms of this 
expansion are quite accurate as long as el 0.5. Thus the full approximate 
solution for u is 

where r ] ,  is given by (3); 

u = U(t )  [f‘(~,) +xriU-zf;(771>] for t < -tl(x), (5) 

u = U(t)  [f‘(q,) - (1 - x) dU-2f;(q2)] for t 2 tz(x), (6) 
where r ] ,  = Y [  - u(t)/2(1- 4 1 4 ;  

where 

The functionf,(q) appearing in (5) and (6) is the solution of 

7 0  = +y(t + to)-$. 

f; +ff; - 2f‘f; + 3171 = qf” + 2f’ - 2, 

flP> =f;(o) =f+> = 0, 

which was fist solved by Moore (1951). Equations (5) and (6) give the improved 
quasi-steady boundary-layer profiles, expected to be accurate as long as el 5 0.5 
and 

respectively. Equation (7) gives the solution of the diffusion equation (equation 
(1) without the convective inertia terms) which satisfies the initial condition 

u = 0 at t = -to($) 

as well as the boundary conditions (2). All that is now required is to evaluate 
the unknown functions tl(x), t z (x)  and to(%). 

The quantities t, and t, are determined in the same way as in Pedley (1975). 
The influence of the leading edge cannot be felt at a point x unless fluid particles 
which have passed the leading edge arrive at that point. We therefore assert 
that the diffusive solution takes over from the initial quasi-steady solution at a 
time ( - t,) when fluid particles which pass the leading edge (x = 0) at that time 
just fail to reach the point z before flow reversal at t = 0. Thus t, is given by 

E ,  = (1-X) 1D1/U2 5 0.5 (8) 

0 

- t d x )  
x = 1 U(t)dt.  (9) 

Similarly, the new quasi-steady solution, which develops when t > 0 from the 
new leading edge x = 1, will take over from the diffusive solution a t  a time (tz) 
when fluid particles which have passed x = 1 first reach the point. Hence 

tdx) 
1 -x = -Io U(t)  dt. 

This method of evaluating t ,  and t, is consistent with the solutions which have 
been obtained for the classic problem of the impulsively-started flat, plate with 
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leading edge at x = 0 (U = 0, t < 0; U = 1,t > 0; thus t ,  = x). Stewartson (1973) 
has shown how information about the leading edge is convected along at the 
outer edge of the boundary layer with the free-stream velocity, but is simultan- 
eously transmitted to the inner parts of the layer by diffusion. Thus the whole 
boundary layer is influenced by the leading edge when t > x. Numerical calcu- 
lations of the wall shear rate do not show any departure from the diffusive 
(Rayleigh) solution until t > 1.5% (Hall 1969; Dennis 1972), but Stewartson 
(1973) quotes numerical predictions of the displacement thickness which depart 
significantly from diffusive values for t > 1.1~. Thus equations (9) and (10) give 
values of t ,  and t ,  which may be slightly below the ‘best’ estimate from the 
numerical point of view, but it is not clear how to improve them. Alternatively 
it may be possible to choose - tl and t, as those values of t  for which E, (equation 
(4)) and E,  (equation (8)) are respectively equal to 0.5. As we shall see, the latter 
choice yields results which are closely comparable with those obtained from 
the former, and we believe that (9) and (10) are not sources of great inaccuracy. 

At t = - t,, the diffusive solution (7) takes over from the quasi-steady solution 
(5). The only disposable parameter which can still be adjusted to take account 
of the velocity field which is present before the take-over is to(%). Ideally, the 
velocity field would be continuous a t  t = -tl; in the simple problem discussed 
by Pedley (1975) the temperature field could be made continuous by a suitable 
choice of to. Here, however, this is not possible because the shapes of the quasi- 
steady and the diffusive velocity profiles are different. Of course, it would be 
possible to solve the diffusion equation with an initial profile given by (5) at 
t = -tl, but then the simplicity of the solution (7) would be lost, and the whole 
theory could become extremely cumbersome. Therefore, to must be chosen such 
that some index of the velocity field is continuous. We take that index to be the 
displacement thickness of the layer, &,, defined by 

This seems the best choice because US, is proportional to the mass flux deficit 
in the boundary layer, and if it  is not made continuous then conservation of mass, 
the most fundamental of all conserved quantities, is not preserved. This choice 
of course means that other quantities, like the dimensionless wall shear rate 7 

( = [ - a~/ay],,~, proportional to the skin friction) and the momentum thickness a,, 
are not continuous at  t = - t,. It is sometimes argued that the momentum thick- 
ness should always be continuous, at least in steady flow, because a jump in &, 
means a locally inh i t e  value of 7, from the integral form of the momentum 
equation: as a 

ax at u2-’+- (u6,) = 7 

(Rosenhead 1963, p. 207). Since the object of the theory is to calculate T ,  it  
might be better to make 6, or even T itself continuous. However, in unsteady 
flow, a jump in 6, would also lead to a singularity in 7 ,  from (12), and in any 
case it is possible to exclude the singularity from predictions of T .  Furthermore, 
although making 7 continuous would make the results look smoother, there 
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would be no guarantee that they were more correct. It is shown below in a parti- 
cular example that the difference in the predictions of r obtained by taking 8, 
and 8, continuous is very small; 8, is also easier to compute. For all these reasons, 
therefore, the choice of as the continuous quantity seems well justified. 
Continuity of 8, a t  t = - tl(x) leads to the following equation for t,(x), derived 
from ( 5 ) ,  (7) and (11): 

X U (  - t l )  dll] = 2 fG)’/ol ?7[-tl-A2(to-tl)]dA, (13) 

where 
P a ,  

611 =f,(m) = 0.727. 

All quantities appearing in the solution have now been determined. It will be 
seen that even 8, will be discontinuous a t  t = +t,, when the new quasi-steady 
boundary layer takes over from the diffusing solution. This is to be expected, 
because the boundary-layer equations are parabolic in x, and the new quasi- 
steady layer, growing from x = 1, can be influenced only by upstream conditions, 
at  smaller values of 1 - x. It cannot depend on the flow from which it takes over. 
In  practice, continuity of the velocity field would be achieved by the presence of 
eigenfunctions, like those examined by Stewartson (1973) and by Watson in the 
appendix to Dennis (1972). These are so complicated, however, that they would 
destroy the simplicity of the present method; we must accept the possibility of 
inaccuracy for times close to tz(x). 

The results of the theory will be presented in terms of the dimensionless shear 
rate a t  the wall, r(x ,  t ) .  This is given by 

where f”(0) = 0.470, fi(0) = 1.300. 

Approximate methods have been used previously to analyse unsteady boun- 
dary layers, although they have all required the use of rather cumbersome inte- 
gral transform techniques, and could not be readily adapted to cover a wide 
range of actual problems. Atabek & Chang (1961), in a discussion of unsteady 
entry flow in a tube (applied to the aorta, as in $ 4  here), used the Oseen approxi- 
mation, replacing the convective inertia terms in (1) by Uu,. This made the 
equation linear, and therefore relatively easy to solve. However, while this 
might be expected to give an accurate description of the flow at the outer edge 
of the boundary layer, there are no grounds for supposing it to be a good approxi- 
mation near the wall, where u < U and where the shear stress is calculated. The 
present method is certainly much more accurate in the quasi-steady regimes 
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( t  < - t, and t > t,), it is unlikely to be more inaccurate during the intermediate 
period when U is small, and it is easier to use. A modified Oseen approximation 
was proposed by Lewis & Carrier (1949), who replaced the convective inertia 
terms by cUU,, for some constant c such that 0 < c < 1. The quantity CU was 
to represent an average across the boundary layer of the convection velocity. 
These authors found that if c was taken equal to 0.35, a value of 7 equal to the 
Blasius value was obtained for steady flow over a flat plate. Carrier & DiPrima 
(1956) subsequently applied the method to small amplitude oscillatory flow 
over a semi-infinite flat plate; it  has the merit of giving the correct answer in 
steady flow, and of predicting a continuous velocity field. However, it  has not 
been used for large amplitude oscillations, and there is no way of knowing whether 
a constant value of c is appropriate throughout a flow reversal, or for different 
geometries (e.g. with an x-dependent outer flow). The present method is pre- 
ferred because it is less cumbersome, it is more generally applicable, and it is 
known to be accurate during the quasi-steady regimes. 

3. Results for the finite flat plate 

the outer flow reverses smoothly at t = 0, i.e. i t  is the uniform deceleration 
The &st time-varying motion to be considered is the simplest one in which 

h 

U =  -At" or U =  - t ;  

the velocity scale Uo is here replaced by (AL)$. Application of the approximate 
method is very straightforward, because (9) and (10) can be solved explicitly, 
yielding 

t, = (244,  t ,  = [2(1-x)]4, 

and (13) reduces to a simple cubic equation for to. We may note that in this case 
el and e2 (( 4) and (8)) are identically equal to 4 when t = - t, and + t ,  respectively, 
so that the two alternative methods of choosing t ,  and t, yield the same results. 
We examine this simple flow in order to answer two questions. (a )  Is it worth 
including the modification to the quasi-steady solutions, represented by the 
second term in the square brackets of (5) and (6) ? (a) Does the different value of 
to derived from continuity of momentum thickness rather than displacement 
thickness significantly alter the predictions of wall shear ? 

The dimensionless wall shear rate 7, derived from (14) and evaluated at the 
mid-point of the plate, x = 0.5 (so that t, = t ,  = I) ,  is plotted against t in figure 
l ( a ) .  The full curve was obtained using the modified quasi-steady solution, 
while the broken curve was obtained from the simple quasi-steady solution, in 
which a,, in (13) andf'i(0) in (14) were set equal to zero (a completely quasi-steady 
curve would pass through the origin, joining up the outer parts of the broken 
curve). We can see that the modified solution is significantly different, especially 
for t < -t ,  and t > t,, where it is known to be more accurate. The shear stress 
reverses its sign before the outer flow, because the slower-moving fluid near the 
wall responds more readily to the applied adverse pressure gradient (proportional 
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? 

FIGUFLE 1. (a) Dimensionless wall shear rate a t  the mid-point of the plate (z = 0.6) 
plotted against time during a uniform deceleration of the flow. - , approximate 
solution using modified quasi-steady solution ; - --- - - , approximate solution using un- 
modified quasi-steady solution. ( b )  Enlarged version of the central part of (a) ,  including 
the solution derived from continuity of momentum thickness, not displacement thickness, 
at t = - 8 ,  (dash-dot curve). 

to 0) than does the free stream. Note that the diffusive solution gives an over- 
estimate of the magnitude of the wall shear at the end of the diffusive phase; this 
is a consistent feature of all the results so far obtained. We see too that the 
modified solution effectively eliminates the discontinuity in r a t  t = -t,, and 
the discontinuity at  t = t, is also much reduced. It is therefore worth including 
the modification. The central region of figure 1 (a) ,  where the diffusive solution 
is in force, is shown on an enlarged scale in figure 1 (b ) ,  and the graph obtained 
with continuity of momentum thickness rather than displacement thickness is 
included as the dash-dot curve. It can be seen to give results differing by a small 
amount, which is greatest for times close to - t,, where the (small) discontinuity 
in r is doubled, and least for times close to t,, where the discontinuity is frac- 
tionally reduced. The use of displacement thickness is therefore vindicated. 

Calibration experiments in which hot-film anemometers have been tested in 
unsteady flows have used sinusoidal oscillations in the stream velocity (Seed & 
Wood 1970; Clark 1974). These are also the simplest type of oscillation to assess 
theoretically. We therefore apply the present theory to a flow for which 

u = l-tacoswt. (15) 

Since we are primarily interested in flows which reverse their direction, we shall 
mostly consider values of the amplitude parameter a greater than one. U is 

5-2 
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U 

FIQURE 2. Sinusoidal velocity U ( t )  given by (15), for the case a = 2.0. Times of flow 
reversal are t = t ~ ,  t ~ .  Values of t , a , ~  and t 2 ~ p  are also plotted for the case w = 1-0, 
z = 0.5. 

plotted in figure 2 for the case a = 2. Note that the times of flow reversal are not 
t = 0, but t = ta and t = t,, where 

ta = 37r - tB = w - y r  - cos-1 (a-I)] ; 

hence the origin of time in the analysis of 92 is shifted. Also marked on figure 2 
are typical values oft, and t ,  for each each flow reversal (tlA, and tu,B); they are 
the values for w = 1-0 and x = 0.5. 

We also restrict attention to situations for which there is -a quasi-steady 
regime at the beginning and end of each cycle, near the time of maximum forward 
velocity. This means that the frequency of the oscillation must be sufficiently 
small that fluid particles which have passed the leading edge x = 0 do reach the 
point x during the same cycle. It is therefore necessary that t,,(x) is smaller 
than t,, and hence that 

w(x-ta) < (a2- I)*. (16) 

What happens when this requirement is not satisfied is discussed in the next 
section. Note that the frequency parameter w is equal to  SZLIU,, where SZ is the 
angular frequency of the oscillation. 

The theory can be applied whether or not a reversed quasi-steady boundary 
layer appears, growing from the new leading edge a t  x = 1, i.e. whether or not 
wt, is less than 7r - wtA. The requirement for the reversed quasi-steady solution 
to arrive at a point x is that 

w(1-x-t,) < (a2-1)+-7T. (17) 

If this is not satisfied, the diffusive solution must be used throughout the region 
of reversed flow, not giving way to another quasi-steady regime until after the 
second reversal in U, at t = t2B, when the quasi-steady boundary layer has once 
more grown from x 2 0. 

Thus when a > 1, the computational procedure at each x is as follows. 
(i) Check that (16) is satisfied, so that a quasi-steady regime exists at  t = 0. 
(ii) Calculate t,,(z), using (9) with time origin shifted to ta; this computation 

is done iteratively. 
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(iii) Check whether (17) is satisfied. 
(iv) If so, compute tza(x) from (10) (again with origin at  t A ) ,  and then tlB(%) 

from (9) with origin at tB (for this sinusoidal example tlB = tU);  if not, go straight 

(v) Compute t2,(x) from (10) with origin at  t ,  (for this sinusoidal example 
t2B = t lA)*  

(vi) Calculate the values of el or ez ((4) and (8)) at each take-over time, to see 
whether they are close to 0-5. 

(vii) Compute to for the first reversal from (13) with origin at ta; this will 
again require an iterative solution. 

(viii) Repeat for the second reversal, if tlB exists. Even when it does, it some- 
times happens that w(tB - t1B) is so close to &r that (13) does not have a solution. 
In  this case we choose the value of to, so as to minimize the difference between 
the two sides of that equation; that value turns out to be equal to t B  - tA .  

(ix) Compute the wall shear rate as a function of time from (14). The integrals 
in (13) and ( 1 4 4  would normally have to be evaluated numerically; in this case 
they can be expressed in terms of the Fresnel integrals 

to (v). 

which are tabulated and can therefore be used as a check. 
Before presenting numerical results, we note that the theory can also be 

adapted for cases in which the outer flow does not reverse (a < 1), but in which 
the modified quasi-steady solution breaks down because U becomes small near 
the time of minimum velocity. In  such cases our usual criteria for calculating the 
times at which the diffusive solution should be used cannot be applied. We 
therefore assert that the diffusive solution takes over from the (modified) quasi- 
steady solution at the time, n / w  - t l (x) ,  when el [equation (4)] first equals 0.5 
and is increasing. (There is also a time very close to n/w at which el = 0.5 and is 
decreasing, because 0 = 0 a t  t = ~ / w . )  A new quasi-steady solution will take 
over at t = n/w+t , (x) .  If el is always less than 0.5, the (modified) quasi-steady 
solution is valid at all times. 

In  the hot-film calibration experiments of Seed & Wood (1970) the value of 
a ranged from about 0.5 to about 5.0, and the value of w from zero to about 3.0; 
x was about 0.5. In  Clark’s (1974) experiments, a was always taken to be less 
than 1 (maximum value 0.84), but o x  reached values of up to 30, at which any 
theory incorporating quasi-steady boundary layers would be inappropriate. 
Here we illustrate the results of the theory with two values of a, one greater 
than 1 (=  2.0) and one slightly less than I ( =  0.98, a particular value used by 
Seed & Wood). Most of the results quoted are for x = 0.5, because the hot film 
in both sets of experiments lay near the centre of the probe, i.e. of the finite flat 
plate. In  the case a = 2.0, we use three values of the frequency parameter w, 
equal to 0.1, 1.0 and 5-0 (note that the restriction (16) means that w must be 
less than about 7.6 for the theory to be applicable with a = 2 and x = 0.5). In  
the case a = 0.98, we use only w = 1.0. 
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Modified QS 

FIGURE 3. Dimensionless wall shear rate T plotted against ot for the case a = 2 . 0 , ~  = 0.5, 
w = 1-0. Solid curves are the quasi-steady solution (QS) and the approximate solution 
obtained from the methods of this paper. The broken curve is the modified quasi-steady 
solution, singular a t  points of flow reversal. 

I n  figure 3 the graph of 7 against ot is plotted for a = 2-0, x = 0.5 and o = 1.0. 
The curve marked QS was obtained from a completely quasi-steady analysis. 
The other solid curve was obtained using the approximate theory of this paper, 
The steps in the curve show that it is by no means perfect, but it is clearly an 
improvement, because it predicts both a phase lead of the wall shear over the 
stream velocity, and a greater amplitude of wall shear than would be predicted 
by quasi-steady theory. These are features of all such oscillatory flows, reaching 
an extreme in the high frequency limit, when the mean and the oscillatory flow 
are uncoupled. The former is then a Blasius boundary layer, and the latter is a 
Stokes layer; the wall shear oscillations have an amplitude which exceeds the 
mean by a factor of order a(wx)g (see Pedley 19723), and have a phase lead of in 
over the quasi-steady solution. The dangers of using the modified quasi-steady 
solution a t  all times are also illustrated in figure 3, by the broken curve. This 
becomes infinite when the stream velocity is zero, because of the factor 1/U2 in 
the second term inside the square brackets of equations (14) (i.e. e, and e2 become 
infinite). 

The effect of varying w is shown in figure 4, where the curves of 7 against wt 
are again plotted for a = 2.0 and x = 0.5, with o = 0.1, 1-0 and 5.0. The low 
frequency curve (o = 0.1) is not very different from the quasi-steady curve of 
figure 3, except that it shows reversal in wall shear significantly before the 
reversal in flow velocity. The discontinuities at the start of each diffusive phase 
are undetectable; the steps in the curve a t  the end of each such phase, at 
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FIGURE 4. Graphs of i- against wt for different values of w, 
when a = 2-0, x = 0.5. 
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FIGURE 5. Graphs of i- against wt for different values of z, when a = 2.0, w = 1.0. 
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FIGURE 6. Graphs of T against wt for the case a = 0.98, z = 06, w = 1.0. Solid curves 
are the quasi-steady solution (QS) and the approximate solution obtained from the methods 
of this paper. The broken curve is the modified quasi-steady solution. 

t = t ,+t,,  and t = t,+t,, are also very small. The curve for w = 5-0 shows a 
dramatic increase in amplitude over that for w = 1.0, by a factor of about 2.2. 
This is close to 4 5 ,  the vaIue predicted by Stokes-layer theory.-Also the phase 
lead over the quasi-steady curve is almost exactly in. There is still a short 
period, near the time of peak forward velocity, when the modified quasi-steady 
solution is expected to be appropriate, but this value of w is close to the limit 
of applicability of the present theory. 

The differences in the wall shear oscillations at  different positions on the 
plate are shown in figure 5, where curves are plotted for a = 2.0, w = 1.0 and 
x = 0.2, 0.5 and 0.8. The greatest shear rates are predicted for x = 0-2, because 
this point is nearest to the leading edge during the time of peak forward velocity. 
The reversed quasi-steady boundary layer, growing from x = 1, does not reach 
x = 0.2 at any stage during the cycle, so the diffusive solution is taken throughout 
the reversed phase of the flow. This is not the case at  x = 0.5 and 0.8, which each 
briefly experience the reversed quasi-steady layer. However, the tendency of the 
diffusive solution to overestimate the magnitude of the wall shear at the end of 
the diffusive phase partially masks the fact that, during reversal, the point 
nearest z = 1 experiences the greatest wall shear. Results computed for a = 10 
show this feature clearly, but we do not plot them because they otherwise are 
qualitatively the same. It is very interesting that the waIl shear at all three 
points is virtually the same during the second diffusive phase, near the second 
reversal in stream velocity. This indicates that, a t  this stage in the cycle, the flow 
a,lmost everywhere on the plate resembles a Stokes layer, independent of the 
ends of the plate. 

In  every case for which computations have been made, the values of el and 
e2 have been calculated a t  the times of transition between the quasi-steady 
regime and the diffusive regime near the first zero, ta, of U. The computations 
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covered values of a equal to 1-2 and 10.0 as well as 2.0, values of w equal to 0.1, 
1-0, 5-0 and 10.0, and values of x equal to 0.2, 0-5 and 0.8. In  every case, except 
those for which cc = w = 10.0, el lay in the range of 0.47 to 0.55; in the exceptional 
cases it took smaller values. Thus to choose el = 0.5 as the criterion of take-over 
in the case where the flow does not reverse seems well justified. The values of e2 
were commonly smaller than 0.5, presumably because in many cases t,+t, 
was close to n/2w, so that 0 was small. 

The results for a = 0.98, w = 1-0 and x = 0.5 are plotted in figure 6, together 
with the corresponding quasi-steady and modified quasi-steady curves (cf. 
figure 3). The phase lead and the increase in amplitude over the quasi-steady 
curve are again in evidence: the wall shear becomes negative near the time of 
minimum velocity, and the maximum negative shear is as much as 35 yo of the 
maximum positive shear. 

4. Wall shear in the entrance to the aorta 
The aorta is an elastic tube which stems from the left ventricle of the heart, 

and almost immediately curves in a complicated three-dimensional way through 
180°, giving off branches to the head and upper limbs (figure 7). It then pursues 
a fairly straight course down in front of the spine, and the blood is distributed 
to  the chest muscles, the abdominal organs and the lower limbs by means of 
further branches. In  this paper we model the aorta as a straight, uniform, rigid 
tube. Thus many drastic simplifications are made, so that we can isolate the 
effect of unsteady flow without the complicating features of the real aorta. 
Nevertheless the results are still expected to be applicable in the short length of 
almost straight tube immediately downstream of the aortic valve (the ‘ascending 
aorta’) because most of the simplifications are justified there, as we discuss 
below. 

(i) Elasticity. The elasticity of the vessel wall is important in determining 
how the pulse wave propagates, and hence in determining the local pressure 
gradient (proportional to 0) as a function of time. However, the flow which is 
driven by that pressure gradient is not greatly affected by the elasticity. This is 
because the wavelength of the wave (several metres in dog and man) is large 
compared with the distance travelled by a fluid element during one cycle (less 
than 10 cm). Thus to any fluid element, the tube appears to have parallel walls, 
although it varies in diameter by a few per cent during each beat. A similar 
argument shows that the taper of the real aorta is also unimportant. 

(ii) Branches. The branches from the arch of the aorta will clearly have a 
significant influence on the flow near their entrances. However, their effect on 
the flow nearer to the heart is likely to be less pronounced. Measurements of 
velocity profiles in this region of the canine aorta show skews which can be fully 
accounted for by the curvature of the vessel (Nerem, Seed & Wood 1972). Very 
near to the heart another skew is introduced a t  certain times in the cycle, prob- 
ably as a result of flow into the coronary arteries, which come off the widened 
part of the aorta just behind the valves. 

(iii) Curvature. It is clear from the quoted measurements that curvature has 
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FIUURE 7. Sketch of the canine aorta. Note the curvature of the arch and the frequent 
branches (which are not drawn to scale). Flow enters from the heart through the aortic 
valve, which prevents much backflow. 

a marked influence on the flow, and that it must ultimately be included in a 
theoretical analysis. Singh (1974) has examined steady entry flow in a uniform 
curved tube, and has shown how the secondary motions, which are a prominent 
feature of flow in curved tubes, are generated within the boundary layer. His 
analysis is valid only at distances from the inlet smaller than (aB)*, where a is 
the tube radius ( w  0.8 cm in the dog) and R is the radius of curvature of the 
tube axis ( M 6 em). Nevertheless it can be used to predict the quasi-steady flow 
which exists near the tube entrance when the flow as a whole is unsteady. As 
yet, however, the diffusive flow to which this must be matched downstream has 
not been calculated (this problem is currently being done). 

(iv) Velocity p,ro$le at the inlet. We assume that the velocity profile is effec- 
tively flat, with an extremely thin boundary layer, at the downstream end 
of the aortic valve, which we call the inlet to the aorta. Bellhouse & Talbot 
(1969) found this to be true in experiments with model valves, and the animal 
experiments already quoted also indicate a fairly flat profile, although random 
disturbances are often superimposed on it, presumably originating in the left 
ventricle. 

The blood velocity in the core of the ascending aorta varies with time in ap- 
proximately the manner shown in figure 8. This curve has been constructed fiom 
a measured wave form given by Nerem et aZ. (1972), but some of the small pertur- 
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FIGURE 8. Dimensionless velocity U(t )  in the core of the aorta, simplified from a measured 
wave form given by Nerem et al. (1972). Note the sharp reversal as the aortic valve closes, 
and the fact that there is no core motion for over half the cycle. Peak velocity (U = 2) 
is 100 cm s--l, mean velocity (U = 0.34) is 17 cm s-l; duration of beat (t = 1) is 0.4 s. 

bations inevitably present invivo have been smoothed out. In  fact, this particular 
curve is made up of five straight lines and a segment of a sine wave, but it fits 
the data very well. The axes of the curve are dimensionless velocity U and time t .  
Since the tube is long, the non-dimensionalization of 9 2 is inappropriate, and we 
have scaled the time with respect to the period of the cycle (T = 0.4s) and the 
velocity with respect to half the peak velocity (CL = 0.5 m s-l). The mean 
dimensionless velocity is = 0.34 (17 % of the peak). The sharp reversal in 
velocity occurs when the aortic valve closes and bulges back into the ventricle 
because the pressure in the aorta briefly exceeds that in the ventricle. 

The core velocity shown in figure 8 is zero for more than half the cycle. We 
assume that the fluid everywhere in the tube comes to rest by the end of the 
cycle, so that each beat can be treated as an isolated event, with the velocity 
initially zero. This cannot be entirely true, as we discuss below, but the pre- 
dictions of unsteady wall shear will not be significantly affected by the small 
residual motions. The assumption is very useful, because it means that the thick- 
ness of the boundary layer which develops at the tube wall during every beat 
never exceeds a value of order ( V T ) ~ .  For blood in the dog aorta (vT)* M 0.13 cm, 
which is less than a tenth of the vessel diameter. Therefore we are justified in 
assuming (a)  that acceleration of the core flow due to the displacement effect 
of the boundary layer is negligible, and (b )  that the boundary layers on different 
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parts of the vessel circumference do not interact. We can therefore analyse the 
boundary layer as if it were on a semi-inhite flat plate, with the stream velocity 
as shown in figure 8.T 

We are now in a position to apply the analysis of $ 2  directly. At each point 
on the tube wall, i.e. at each value of x (now non-dimensionalized with respect to 
!JOT), the sequence of events is as follows. Initially there will be set up on the 
tube wall a diffusive (Rayleigh) layer, with the same thickness for all x, in which 
the velocity is given by (7) with to = 0. A quasi-steady boundary layer will be 
initiated at the leading edge (x = 0),  and will propagate downstream so that it 
takes over from the diffusive layer at a time t,, calculated from the relevant 
version of (10): 

x = 1; U(t )  at. 

Then the (modified) quasi-steady solution will persist until after the time of 
peak forward velocity, t = t,, and a new diffusive layer (not independent of x) 
will take over before the first flow reversal. Since the tube is long, no new quasi- 
steady layer can grow from the trailing edge, and the next quasi-steady layer to 
take over would do so during the second interval of forward flow. However, that 
can happen only at extremely small values of x, which we shall not consider. 
At less small values, the diffusive solution will persist until the end of the cycle 

The quasi-steady regime around t = t,, will not exist if the point x is too far 
from the leading edge for particles entering the tube at  the start of the cycle to 
reach the point some time before t,a, and for particles entering it at  t, to reach 
the point before the first reversal. In  the case considered here, no quasi-steady 
regime exists for x > 0.21, i.e. for 2 > 4.2 cm, which is less than three vessel 
diameters from the entrance. For larger values of x, the diffusive solution (with 
to = 0) exists throughout the cycle, and is the same for all x. This conclusion, 
however, leads to a contradiction, because if the flow is independent of x, the 
equation governing the velocity is linear. Hence the periodic function U ( t )  can 
be split up by Fourier analysis into its mean and oscillatory components, and 
each analysed separately. The oscillatory components of u will represent Stokes 
layers, but the mean velocity fieldlwill be Poiseuille flow. Now the steady entrance 
length for Poiseuille flow is approximately 0.03 R e d ,  where d is the vessel dia- 
meter and Re is the mean Reynolds number; in the present case this takes a 
value of about 33 cm, much greater than the 4.2 em predicted above. So the 
flow cannot really be x-independent in the region between these two values of x. 
The error in the present method lies in neglecting the residual motions at the 
end of each cycle. After many cycles these would build up and the (x-dependent) 
mean flow be established. As we shall see, this neglect does not affect the pre- 
dictions of oscillatory shear rate on the wall, but predictions of the mean shear 
rate will be in error, at  least for x > 0-21. Improved predictions for the wall 

-f The author is aware that, very near to the entrance of a tube, the displacement effect 
is considerable, and the inviscid flow in the core is not approximately parallel (Van Dyke 
1970). However, this does not affect the &st approximation to the flow in the boundary 
layer, and hence does not affect the wall shear. 

( t  = 1). 
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FIUURE 9. Dimensionless shear rate on the wall of the aorta, plotted against time, a t  three 
distances from the inlet. Motion in the boundary layer has almost completely died out by 
the end of the cycle. 

shear downstream of x = 0.21 can be achieved by an analysis like that of Pedley 
(1972b). Far downstream the developing mean boundary layer is independent of 
the oscillatory Stokes layer, and their interaction less far downstream can be 
analysed using the method of matched asymptotic expansions. Since we are 
here primarily interested in the oscillatory shear stress, we shall not investigate 
this region further. 

The dimensionless wall shear rate T is plotted as a function of time for three 
different values of x in figure 9. Very near the entrance (x = 0.01) there is a 
large, quasi-steady peak in T, almost in phase with the peak velocity. This 
diminishes rapidly as x increases, and has an increasing phase lead, which is to 
be expected as the modified quasi-steady boundary layer becomes thicker. 
However, at  all times and at all values of x, the shear rates with the greatest 
magnitude are negative. These high reversed shear rates are a consequence of 
the large adverse pressure gradient associated with the rapid deceleration of the 
core flow as the aortic valve closes. It can also be seen that in all cases the wall 
shear has almost completely died away at the end of the beat, confirming that 
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the residual motions are very small, and can be neglected in calculations of the 
oscillatory components of wall shear. 

The predicted values of the mean wall shear (which may be inaccurate, 
especially at the downstream site) are also shown in figure 9. At x = 0.01, the 
mean is about 15 yo of the (negative) peak, compared with a mean velocity of 
17 yo of the (positive) peak velocity. However, this falls rapidly, to about 2 yo 
of the peak, at  values of x greater than 0.21, where the solution is diffusive all 
the time. The r.m.s. value of T,  on the other hand, falls from about 40 % of the 
peak to about 30 yo, and remains considerably larger than the mean. In  view of 
the large amplitude of the oscillations in T ,  it  seems much more likely a priori 
that the permeability of the artery wall, and thus the generation of athero- 
sclerosis, is correlated with some measure of wall shear which is independent of 
direction, like the peak or r.m.8. value, rather than the arithmetic mean. Cir- 
cumstantial evidence in support of this comes from the steady experiments by 
T. C. Carew, reported by Fry (1973), in which the rate of uptake of marked 
albumin into the wall of an excised segment of artery was found to be approxi- 
mately proportional to 72, not 7. 

Finally, we note that 7 is non-dimensionalized with respect to U,(vT)-#, so 
in this case the peak walI shear rate is about 400 s-l. This corresponds to a wall 
shear stress of 16 Nm-2. Fry (1968) has demonstrated that the endothelium of 
an artery can be physically damaged by shear stresses in excess of 40 Nm-2. 
Such values are not achieved in this case, but they are not so fa; in excess of 
the prediction that the possibility of endothelial damage can be universally 
ruled out. 

This work was supported by the Science Research Council. 
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